Syarat b > 0 , a > 0 dan a ≠ 1
Keterangan :
a → bilangan pokok atau basis logaritma.
b → hasil pemangkatan atau bilangan yang dilogaritma
x → bilangan pangkat atau hasil logaritma
Rumus dan Identitas Logaritma
Contoh :
- 2log 2 = 2log 21 = 1
- log 10 = log 101 = 1
Contoh :
- 2log 1 = 2log 20 = 0
- 4log 1 = 4log 40 = 0
Contoh :
- 2log 8 = 1 / (8log 2) = 1 / (8log 81/3) = 1/ (1/3) = 3
- 64log 4 = 1 / (4log 64) = 1 / (4log 43) = 1/3
Syarat n > 0 dan n ≠ 1
Contoh :
- 2log 16 = (4log 16) / (4log 2) = (4log 42) / (4log 41/2) = 2/ (1/2) = 4
- 4log 64 = (2log 64) / (2log 4) = (2log 26) / (2log 22) = 6/2 = 3
Contoh :
- 1616log 32 = 32
- 42log 4 = 22(2log 4) = 2(2log 4 + 2log 4) = 2(2log 4). 2(2log 4) = 4.4 = 16
alog (b.c) = alog b + alog c |
Contoh :
- 2log (16.2) = 2log 16 + 2log 2 = 4 + 1 = 5
- 4log (32.2) = 4log 32 + 4log 2 = 4log 16 + 4log 2 + 4log 2 = 4log 16 +4log 4 = 3
alog (b/c) = alog b - alog c |
Contoh :
- 2log (16/2) = 2log 16 - 2log 2 = 4 - 1 = 3
- 4log (32/2) = 4log 32 - 4log 2 = 4log 16 + 4log 2 - 4log 2 = 4log 16 = 2
alog (b/c) = - alog (c/b) |
Contoh :
- 2log (4/2) = - 2log (2/4) = - 2log ½ = - 2log 2-1 = -(-1) 2log 2 = 1
- 4log (32/2) = - 4log (2/32) = - 4log (1/16) = - 4log 4-2 = -(-2) 4log 4 = 2
Contoh :
- 2log 4 = 2log 22 = 2 2log 2 = 2.1 = 2
- 2log √32 = 2log (25)½ = 2log 25/2 = 5/2 . 2log 2 = 5/2 (1) = 5/2
- 2log 84 = 4 2log 8 = 2 . 3 = 6
Contoh :
- 22log 43 = 3/2 . 2log 4 = 3/2 (2) = 3
- 24log √32 = 24log 32½ = 1/8 . 2log 32 = 1/8 (5) = 5/8
alog b . blog c . clog d = alog d |
Contoh :
- 2log 4 . 4log 16 = 2log 16 = 2log 24 = 4
- 2log 4 . 4log 16 16log 4 = 2log 4 = 2log 22 = 2
- (2log 4 + 2log 6) . 24log 32 = 2log (4.6) . 24log 32 = 2log 32 = 5
Berikut rumus praktis yang disajikan dalam tabel.
No comments:
Post a Comment